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Design of Serially Concatenated Interleaved Codes

S .  Fkndetto, 1). I)ivsalar, G. Mcmtorsi,  F. Pollara

Abstract - - A serially concatenated code with intcr-
kaver consists of the cascade of an outer encoder, an in-
terleavcr  permuting the outer codeword bits, and an inner
encoder whose input words are the permuted outer code-
words. In this paper we derive design guidelines for the outer
and inner codes that maximize the in terleaver  gain and the
asyn]r) t ot ic slope  of the error pro babi]i ty curves.

KcywoMLs --- Concatenated codes, ~hrbo  codes, Paral-
lel and serial  con catenation of codes.

1, IN T R O D U C T I O N

In his goal to find a class of codes whose probability of er-
ror decreased exponentially at rates less than capacity, while
decoding complexity increased only algebraically, David For-
ney [1] arrived at a solution consisting of the multilevel cod-
ing structure known as concutmaied  code. It consists of
the cascade of an inner  code and an outer  code, which, in
Forney’s approach, would be a relatively short inner code
(typically, a convolutional code) admitting simple n~aximunl-
]ikelihood decoding, and a long high-rate algebraic uonbinary
Reed-Solonlon outer code equipped with a powerful algebraic
error-correction algorithm, possibly using reliability informa-
tion from the inner decoder. An interleaver is sometimes
used between the two encoders to separate bursts of errors
produced by the inner decoder.

We find then, in a “classical” concatenated coding scheme,
the main ingredients that formed the basis for the invention
of “turbo codes” [2], namely two, or more, constituent codes
(CCS) and an inierleaver. In the following, we will refer
to turbo  codes as parallel concatenated convolutional codes
(Pcccs).

in this paper, we consider the serial concatenation of in-
terleaved codes or serially concatenated codes (SCCS),  called
SCBC or SCCC according to the nature of CCS, that can be
block (SCBC) or convolutional codes (SCCC).  For this class
of codes, analytical upper bounds to the performance of a
lllaxil~~~llll-likelillood  (ML) decoder had been derived in [3]
and [4]. Ilere,  we propose design guidelines leading to the
optimal choice of CCs that maximize the imterleaver gain
and the asymptotic. code performance.

I]. ])l?SIGN  OF SERIALLY CONCATENATED CODES WI1’11
IN1’ER1,EAVER

]n [4] we proved that the bit error probability of SCRCS
using a uniform  interleave [5] and a maximum-likelihood
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decoder can be upper bounded as

k
~b(e) < ~ fftcs(to, f~)lH=e-RCEEJNO  , ( 1 )

Ul=l

where RC = k/n is the rate of (7s, E~/No is the bit signal-to-
noise ratio, Acs (w, H) is the conditional weight enumerating
function (CWIIF)  of the SCBC

ACS(W, H) = ~A::h Hh ,
h

where A~~h is the number of codewords of the SCIIC with
weight h associated to an input word of weight, w.

The coefflcieuts A~sh of the CWEF  can be obtained from
those of the two CCS hs

(2)

where the superscripts CO and Ci refer to the outer and inner
code, respectively.

For SCCCS (whose block diagram is shown in Fig. 1), com-
puting the upper bound to the bit error probability perfor-
mance requires the definition of an equivalent block code,
formed by the sequences of the SCCC with length NR~ that
join the zero states of both CCS. Thus, performance evalua-
tion requires the lcuowledge of the CWEFS  A~Oi and A~~ of
the two CCS and then the application of (2) and (1), respect-
ively.

The bound to the bit error probability can be rewritten as

—.

where w~l is the minimum weight of an input sequence gen-
erating an error event of the outer  code, and hf,l is the nliu-
i mum weight of the code words of CS.

To evaluate the CWEFS of the CCS, consider a rate R =
p/n convolutional code C with memory v, and its equivalent
(N/R, N –pv) block code whose codewords are all sequences
of length N/R bits of the convolutional code starting from
and ending at the zero state. By definition, the cocle words of
the equivalent block code are concatenations of error events
of the convolutional codes. I,et

A(1, H,j) = ~ Al,h,j Hh
h
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Fig. 1. Ser-iaily concatenated (n, k,N) conuolulionai code.

betlleweig~lt ellllIlleratillg  fullction  ofsequellces  ofthc con-
volutiona]  code that, concatenate j error events with total
input weight 1, where AI,~,j is the number of sequences of
weight h, input weight 1, and number of concatenated er-
ror events j. For N much larger than the memory of the
convo)utiona.1  code, the coefficient, A~h of the C)WI+;F of the
ecluiva]ent  block code can be approxi;~at,ed  byl

(4)

where n~j the largest number of error events concatenated
in a codeword of weight h and generated by a weight 1 in-
put, sequence, is a function of h and 1 that depends on the
encoder, as we will see later.

l,et us return  now to the block code equivalent to the
SCCC. lJsing previous result (4) with j = ni for the inner
code, and the analogous one for the outer codez

and substituting them into (2), we obtain the coefficient
A:sh  of thy serially concatenated block code equivalent to
the’sccc  HI the form

Where d; is the free distance of the outer code.
We are interested in large inter] eaver lengths, and thus use

forthebinomial  coefficient the asymptotica  pproximation

Substitution of this approximation in (5) yields

Il(his assumptiorl  permits neglecting the length of error events compared
to N, and assuming that the number of ways j input sequences producing
j error  events  can be arranged in a register of length N is (N~P). The. . .
ratio N/p derives from the fact that the code has rate p/n, and thus N bits
correspond to N/p input words or, equivalently, trellis steps.

aln the following, superscripts “o” and “i” will refer to quantities per-
taining to outer and inner code, respectively.

Finally, substituting (6) into (3), gives the bit error proba-
bility bound in the form

NR?

(7)

Using expression (7) as the starting point, we will obtain
some important design considerations. The bound (7) to
the bit error probability is obtained by adding termsof the
first summation with respect to the SCCC weights h. ‘he
coefficients of the exponentialsin h depend, among other pa-
rameter, on N. For large N, and for a given h, the dominant
coefIlcient  of the exponentia]s  in h is the one for which the
exponent of N is maximum. Define this maximumexponent
as

a(h) ~ ~;a[x{n”  + ni – 1 – 1} .

Evaluating a(h) in general is not possible without specifying
the CCS. Thus, we will consider two important cases, for
which general expressions can be found.

A. The exponent of N for the minimum weight

For large values of ~b/NO,  the performance of the SCC
are dominated by the first term of the summation with re-
spect to h, corresponding to the minimum value h = h,,l.
Remembering that, by definition, n’~ and nfi are thenlax-
irnum number of concatenated error events in codewords of
the inner and outer code of weights hm and 1, respectively,
the following inequalities hold true:

and

where 1,,, (h,,, ) is the minimum weight 1 of codewords of the
outer code yielding a codeword of weight hn, of the inner
code, and Iz] mean s’’integer part of x“.
In most cases, I,,l(h.,n) < 2dj,  and ho, < 2d},  so that n~ =
nfi = 1, and (8) becomes

a(hm) = 1 – Ln(h,n) < 1 – d; . (9)

‘l’he result (9) shows that the exponent of N correspond-
ing to the l~lilli~~lul~l-weigllt  of SCCC codewords is always
negative for d; z 2, thus yielding an interleaver gain at high
~b/NO. Substitution of the exponent @(hn, ) into (7) trun-
cated to the first term of the summation with respect to h
yields

lirtl ~’b(e) ~ & N1-d~ f3Xp(-hn,~cE~/~o) (lo)
Eil+m
No
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where B,,l is a suitable constant.
Expression (1 O) suggests the following conclusions:

●

●

●

For the values of ~b/NO and N where the SCCC per-
formance is dominated by its free distauce  d~s = ~~~,,
increasing the interleaver length yields a gain in perfor-
In au ce.
To increase the interleaver gain, one should choose an
outer  code with large d;.
10  improve the performance with ~b/N(I, One should
choose au inner and outer code combination such that
1/,,, is large.

These conclusions do not depend on the structure of the
CCS, and thus they yield for both recursive and non recursive
encoder.

we eva]llat,e t,llell tile large5t expollei]t,  of N, defined as

aM 8 m~x{a(h)}  = ;l~~{n”  + ni – 1 – 1} . (11)
,,

‘J’his  exponent will permit to find the dominant contribution
to the bit error probability for N + cm.

B. The maximum eqmenl of N

We need to treat the cases of nonrecursive  and recursive
inner encoders separately. As we will see, non recursive eu-
coders and block encoders show the same behavior.

A. Block and nomwcursive  convolutional inner cm-
codcm

Consider the inner code and its impact on the exponent of N
in (1 1). For a nonrecursive  inner encoder, we have njf = 1.
In fact,  every input sequence with weight, one generates a
finite-weight error event, so that au input sequence with
weight, 1 will generate, at most, 1 error events corresponding
to tile concatenation of 1 error events of input weight one.
Siucc the uniform interleaver generates all possible permuta-
tion of its input, sequences, this event will certainly occur.

Thus, from (11 ) we have

@M=nfi-lZ(),

and interleaving gain is not allowed. ‘l’his conclusion holds
true for both  SCCC employing nonrecursive  inner encoder
and for all SCHCs, since block codes have codewords corre-
sponding to input words with weight equal to one.

For those SCCS we always  have, for some h, coefficients
of the exponential in h of (7) that increase with N, and this
explains the divergence of the bound arising, for each ~;b/NO,
when the coefficients increasing with N become dominant.

B. Recursive inner encoders

In [6], we proved that, for recursive convolutional encoders,
the minimum weight of input sequences generating error
events is 2. As a consequence, au input sequence of weight, I
can generate at most l~j error events.

Assuming that, the inner encoder of the SCCC is recursive,
the maximum exponent of N in (11) becomes

CYhf = l:Y{’l”+ H -’-1}
= ‘W{”++} ~ ’12)

The  maximization involves 1 and W, since n~ depeuds  011
both quantities. lU fact, remembering its definition as the
maximum number of concatenated error events of codewords
of the outer code with weight 1 generated by input words of
weight w, it is straightforward to obtain

Substituting now the last inequality (13) into (12) yields

Wfsnl,x{[-+[+l} .  (,4,

Tile maximization of the RHS of (14) is lengthy but
straightforward. ‘l’he final result is

d;+l

H
~M=— —

2 “
(15)

The  value (15) of a~ shows that the exponents of N in (7)
are always negative integers. ‘1’bus, for all h, the coefllcients
of the exponents in h decrease with N, and we always have
an int,erleaver gain.

Denoting by d~,.f,, as in [5], the minimum weight, of codew-
ords of the inner code generated by weight-2 input se-
quences, we obtain a different weight h(cYM)  for even and
odd values of dj.

For d; even, the weight h(@M) associated to the highest
exponent of N, is given by

since it is the weight of au inner codeword that concatenates
d; /2 error events with weight d:,,,.

Substituting the exponent ~hf ‘into (7), approximated only
by the term of the summation with respect to h correspond-
ing to h = h(crLf), yields

where Be..,, is a suiatble  constant.

d; odd
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‘ For d; odd, the value of h(a~) is given by

where h!]?) is the minimum weight of sequences of the inner
code generated by a weight 3 input sequence. in this case,
in fact, we have

d;–1
~~M = —

2

concatenated error events, of which n*& – 1 generated by
weight 2 input sequences and one generated by a weight 3
input, sequence.

Thus, substituting the exponent O’A4 into (7) approximated
by keeping only the term of the summation with respect to
h corresponding to h = h(a~) yields

IiIll ~b(e) ~ BOddN-  % .
N-m

{[

(d; - W:,.,,. exp —
2 1 }+ }$) ~ic]{b/No , (17)

where  BOdd is a suitable constant.
In both cases of dj even and odd, we can draw from (16)

and (17) a few important design considerations:

● in contrast with the case of block codes and nonrecur-
sive convolutional inner encoders, the use of a recursive
convolutional inner encoder always yields an interleave
gain. As a consequence, the first design rule states that
the inner cmcoder  must be a convolutional recur-
sive encoder.

● The coefficient h (aM ) that multiplies the signal-to-noise
ratio h’b/NO in (7), increases for increasing values of
d:,=,, . ‘1’bus, we deduce that, the effective free dis-
tance of the inner code must be nmximizcd.  Roth
this and the previous design rule had been stated also
for PCCCS3 [6]. As a consequence, the recursive con-
volutional encoders optimized for use in PCCCS (see
Tables in [6;7]) can be employed altogether as inner CC
in SCCCs.

5
● l’he interleave gain is equal to N- z for even values

~of dj and to N– for odd values of dj. As a con-
sequence, we should choose, compatibly with the de-
sired rate RC of the SCCC, au outer code with a large
and, possibly, odd value of the free distance.

● AS to Other outer code parameters, N; and WM,J  should
be minimized. In other words, we should have the mini-
mum number of input sequences generating free distance
error events of the outer code, and their input weights
should be minimized. Since uonrecursive  encoders have
error events with w = 1, and, in general, less input errors
associated with error events at free distance [8], it can
be convenient to choose as outer code a nonrccur-
sivc  encoder with minimum N; and WM,$. Conven-
tional nonrecursive  convolutional codes found in books
(see for example [9]) are appropriate.

‘For PCCCS,  however, both CCS had to comply with those design rules.

C. Examples cotljrming  11) e design rules

‘1’o  confirm the design rules obtained asymptotically, i.e.
for large signal-to-noise ratio and large interleaver lengths
N, we evaluate the upper bound (7) to the bit error proba-
bility for two SCCCS,  with different interleaver lengths, and
compare their performance with those predicted by the de-
sign guidelines.

The two SCCCS are obtained as follows: the first, SCCC1,
is a (3,1 ,N)  SCCC using as outer code a 4-state, (2,1) nonre-
cursive, convolutional encoder, and as inner code a 4-state,
(3,2) recursive, systematic convolutional encoder. The sec-
ond, SCCC2, is a (3,1 ,N)  SCCC,  using as outer code a 4-
state, (2, 1 ) recursive, systematic convolutional encoder, and
as inner code a 4-state, (3,2) nonrecursive  convolutional en-
coder. The outer, inner, and SCCC code parameters intro-
duced in the design analysis are listed in Table 2. In this
table, the CCS are identified through the description of Ta-
ble 1.
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In Figs. 3,2 we plot the bit error probability bounds for
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Code description G(D)
Rate 1/2  NR [I+ D+D2,  I+D2J

[

1, 0, 1+D2
Rate 2/3 R

o, 1, ‘+[;+?’
1+ I)+D2

[

1
Rate 2/3 NR

I+D, D, 1
I+D, 1 ,  1+1) 1

Table 1. Generating matrices for the constituent convolutional codes

SCCC2 II 5 -4

l’able 2. Design parameters of CC. and SCCCS for two SCCCS

SCCCS  1 and 2 of Table 2, with iuterleaver  lengths N =
200,400,600,800,1000,2000.

Consider first SCCC 1, which employs as inner CC a recur-
sive, convolutional encoder as suggested by the design rules
and as outer encoder a nourecursive  encoder. Code SCCC1
has d; = 5; thus, from (1 5), we expect an interlcaver  gain
behaving as N-3. This is fully confirmed by the curves of
Fig. 2, which, for a fixed and sufflcienttly large signal-to-noise
ratio, show a decrease in ~b(e)  of a factor ] ()()(), when N in-

creases from 200 to 2000.
Cousider  then code SCCC2, which differs from SCCC1 in

the choice of a nonrecursive  inner encoder, with the same
parameters but with the crucial difference of U$l = 1. Its bit
error probability curves arc shown in Fig. 3. ‘1’hey couflrm
the previous design predictions. We see, in fact, that for low
signal-to-noise ratios, say below 3 dR, no interleaver gain is
obtained. ‘1’his is because the performance are dominated by
the exponent h (crM ), whose coefflcieut  increases with N. On
the other hand, for larger signal-to-noise ratios, where the
dominant contribution to pb (e) is the exponent with lowest
value h,,,, the interleave gain makes its appearance. From
(9), we foresee a gain behaving as N-4, meaning 4 orders
of magnitude for N increasing from 200 to 2000. Curves
in l“ig. 3 show a smaller gain (slightly higher than 1/1000),
which is on the other hand rapidly increasing with ~jb/NO.

111.  C O N C L U S I O N S

We have presented design criteria to select constituent
codes for constructing serially concatenated codes with in-
terleave, a concept building on classical concatenated codes
and parallel concatenated cocles known as “turbo codes”.
Based on analytical upper bounds to the bit error probabil-
ity asymptotic in the interleaver length N, design guidelines
have identified the crucial parameters for the outer and inner
codes that, maximize the inierlcavcr  gain and the asymptotic
slope of the error probability curves. The analysis showed
that, the interleave gain, defined as the factor  that, decreases

the bit error probability as a function of the inter] eaver size,
can be made significa]ly higher than for turbo codes.
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